Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model

Kevin Clayton, Jean Christophe Delpech, Shawn Herron, Naotoshi Iwahara, Maria Ericsson, Takashi Saito, Takaomi C. Saido, Seiko Ikezu, Tsuneya Ikezu

Research output: Contribution to journalArticlepeer-review


Background: Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer’s disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology. Methods: Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F) mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor (PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC. Results: Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice. Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia compared to Mac2 homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by super-resolution microscopy and immuno-electron microscopy. Discussion: Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aβ plaques and clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and exacerbation of tau propagation in AppNL-G-F mice.

Original languageEnglish (US)
Article number18
JournalMolecular neurodegeneration
Issue number1
StatePublished - Dec 2021


  • Adeno-associated virus
  • Alzheimer’s disease
  • Amyloid precursor protein
  • Amyloid-beta peptide
  • Extracellular vesicles
  • Humanized mouse model
  • Lentivirus
  • Microglia
  • Microtubule-associated protein tau
  • Neuritic plaque
  • Tauopathy

ASJC Scopus subject areas

  • Molecular Biology
  • Clinical Neurology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model'. Together they form a unique fingerprint.

Cite this