Performance characteristics of dedicated molecular breast imaging systems at low doses

Zaiyang Long, Amy L. Conners, Katie N. Hunt, Carrie B. Hruska, Michael K. O'Connor

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Purpose: The purpose of this study was to compare the system performance characteristics and lesion detection capability of two molecular breast imaging (MBI) systems: a multicrystal sodium iodide (NaI)-based single-head system and a cadmium zinc telluride (CZT)-based dual-head system at low administered doses (150-300 MBq) of Tc-99m sestamibi. Methods: System performance characteristics including count sensitivity, uniformity, energy resolution, and spatial resolution were measured using standard NEMA methods, or a modified version thereof in cases where the standard NEMA protocol could not be applied. A contrast-detail phantom with 48 lesions at varying depths from the collimator surface was used to assess lesion contrast-to-noise-ratio (CNR) using background count densities comparable to those observed in patient studies performed with administered doses of 150 MBq Tc-99m sestamibi. Lesions with CNR > 3 were deemed to be detectable. Thirty patients undergoing MBI examinations with administered doses of 150-300 MBq were scanned for an additional view on the pixelated NaI system. CNR was calculated for lesions observed on patient images. Background count densities of patient images were measured and compared between the two systems.Results: Over the central field of view, integral and differential uniformity were 6.1% and 4.2%, respectively, for the pixelated NaI system, and 3.8% and 2.7%, respectively, for the CZT system. Count sensitivity was 10.8 kcts/min/MBq for the NaI system and 32.9 kcts/min/MBq for the CZT system. Energy resolution was 13.5% on the pixelated NaI system and 4.5% on the CZT system. Spatial resolution (full-width at half-maximum) for the pixelated NaI detector was 4.2 mm at a distance of 1.2 cm from the collimator and 5.2 mm at 3.1 cm. Spatial resolution of a single CZT detector was 2.9 mm at a distance of 1.2 cm from the collimator and 4.7 mm at 3.1 cm. Effective spatial resolution obtained with dual-head CZT was below 4.7 mm throughout a simulated breast thickness of 6 cm. From contrast-detail phantom images of lesions at distances of 1.5-4.5 cm from the collimator face, the CZT system detected 124 of 144 (86%) of lesions compared to 97 of 144 (67%) with the NaI system. In patient studies, from comparison of the same view with both systems, a total of 7 breast lesions were identified on CZT system in seven patients, and 4 of 7 (57%) were detected on NaI system. Patient image background count densities on the CZT system were on average 3.4 times higher than those on the NaI system. Conclusions: The CZT system demonstrated better uniformity, count sensitivity, spatial resolution, energy resolution, and lesion detection in phantom and patient studies compared to the NaI system. At administered doses of 150-300 MBq Tc-99m sestamibi, patient results obtained with CZT systems may not be directly translatable to NaI systems.

Original languageEnglish (US)
Pages (from-to)3062-3070
Number of pages9
JournalMedical physics
Issue number6
StatePublished - Jun 1 2016


  • breast cancer
  • breast specific gamma imaging
  • cadmium zinc telluride
  • molecular breast imaging
  • sodium iodide

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Performance characteristics of dedicated molecular breast imaging systems at low doses'. Together they form a unique fingerprint.

Cite this