Natural language processing for the identification of silent brain infarcts from neuroimaging reports

Sunyang Fu, Lester Y. Leung, Yanshan Wang, Anne Olivia Raulli, David F. Kallmes, Kristin A. Kinsman, Kristoff B. Nelson, Michael S. Clark, Patrick H. Luetmer, Paul R. Kingsbury, David M. Kent, Hongfang Liu

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Background: Silent brain infarction (SBI) is defined as the presence of 1 or more brain lesions, presumed to be because of vascular occlusion, found by neuroimaging (magnetic resonance imaging or computed tomography) in patients without clinical manifestations of stroke. It is more common than stroke and can be detected in 20% of healthy elderly people. Early detection of SBI may mitigate the risk of stroke by offering preventative treatment plans. Natural language processing (NLP) techniques offer an opportunity to systematically identify SBI cases from electronic health records (EHRs) by extracting, normalizing, and classifying SBI-related incidental findings interpreted by radiologists from neuroimaging reports. Objective: This study aimed to develop NLP systems to determine individuals with incidentally discovered SBIs from neuroimaging reports at 2 sites: Mayo Clinic and Tufts Medical Center. Methods: Both rule-based and machine learning approaches were adopted in developing the NLP system. The rule-based system was implemented using the open source NLP pipeline MedTagger, developed by Mayo Clinic. Features for rule-based systems, including significant words and patterns related to SBI, were generated using pointwise mutual information. The machine learning models adopted convolutional neural network (CNN), random forest, support vector machine, and logistic regression. The performance of the NLP algorithm was compared with a manually created gold standard. The gold standard dataset includes 1000 radiology reports randomly retrieved from the 2 study sites (Mayo and Tufts) corresponding to patients with no prior or current diagnosis of stroke or dementia. 400 out of the 1000 reports were randomly sampled and double read to determine interannotator agreements. The gold standard dataset was equally split to 3 subsets for training, developing, and testing. Results: Among the 400 reports selected to determine interannotator agreement, 5 reports were removed due to invalid scan types. The interannotator agreements across Mayo and Tufts neuroimaging reports were 0.87 and 0.91, respectively. The rule-based system yielded the best performance of predicting SBI with an accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 0.991, 0.925, 1.000, 1.000, and 0.990, respectively. The CNN achieved the best score on predicting white matter disease (WMD) with an accuracy, sensitivity, specificity, PPV, and NPV of 0.994, 0.994, 0.994, 0.994, and 0.994, respectively. Conclusions: We adopted a standardized data abstraction and modeling process to developed NLP techniques (rule-based and machine learning) to detect incidental SBIs and WMDs from annotated neuroimaging reports. Validation statistics suggested a high feasibility of detecting SBIs and WMDs from EHRs using NLP.

Original languageEnglish (US)
Article numbere12109
JournalJMIR Medical Informatics
Issue number2
StatePublished - Apr 2019


  • Electronic health records
  • Natural language processing
  • Neuroimaging

ASJC Scopus subject areas

  • Health Informatics
  • Health Information Management


Dive into the research topics of 'Natural language processing for the identification of silent brain infarcts from neuroimaging reports'. Together they form a unique fingerprint.

Cite this