TY - JOUR
T1 - Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization
AU - Beavers, David L.
AU - Wang, Wei
AU - Ather, Sameer
AU - Voigt, Niels
AU - Garbino, Alejandro
AU - Dixit, Sayali S.
AU - Landstrom, Andrew P.
AU - Li, Na
AU - Wang, Qiongling
AU - Olivotto, Iacopo
AU - Dobrev, Dobromir
AU - Ackerman, Michael J.
AU - Wehrens, Xander H.T.
PY - 2013/11/19
Y1 - 2013/11/19
N2 - Objectives This study sought to study the role of junctophilin-2 (JPH2) in atrial fibrillation (AF). Background JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca2+ handling and modulation of ryanodine receptor Ca2+ channels (RyR2). Whereas defective RyR2-mediated Ca2+ release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Methods Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudoknock-in (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. Results PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF than wild type (WT)-PKI mice, whereas A399S-PKI mice expressing a hypertrophic cardiomyopathy-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca2+ release events. These changes were attributed to reduced binding of E169K-JPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca2+ spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients and an increased frequency of spontaneous Ca2+ release events. Conclusions Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2/RyR2 ratios can promote SR Ca2+ leak and atrial arrhythmias, representing a potential novel therapeutic target for AF.
AB - Objectives This study sought to study the role of junctophilin-2 (JPH2) in atrial fibrillation (AF). Background JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca2+ handling and modulation of ryanodine receptor Ca2+ channels (RyR2). Whereas defective RyR2-mediated Ca2+ release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Methods Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudoknock-in (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. Results PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF than wild type (WT)-PKI mice, whereas A399S-PKI mice expressing a hypertrophic cardiomyopathy-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca2+ release events. These changes were attributed to reduced binding of E169K-JPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca2+ spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients and an increased frequency of spontaneous Ca2+ release events. Conclusions Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2/RyR2 ratios can promote SR Ca2+ leak and atrial arrhythmias, representing a potential novel therapeutic target for AF.
KW - atrial fibrillation
KW - calcium
KW - junctophilin
KW - ryanodine receptor
KW - sarcoplasmic reticulum
UR - http://www.scopus.com/inward/record.url?scp=84888273529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888273529&partnerID=8YFLogxK
U2 - 10.1016/j.jacc.2013.06.052
DO - 10.1016/j.jacc.2013.06.052
M3 - Article
C2 - 23973696
AN - SCOPUS:84888273529
SN - 0735-1097
VL - 62
SP - 2010
EP - 2019
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
IS - 21
ER -