Multiple ligand and cell-dependent states of lateral mobility of plasmalemmal G protein-coupled cholecystokinin receptors

Belinda F. Roettger, Edward H. Hellen, Thomas P. Burghardt, Laurence J. Miller

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Lateral movement of receptor molecules in the plane of the plasmalemma has important implications for signal transduction and receptor regulation, yet mechanisms affecting such movement are not well understood. We have studied the lateral mobility of the G protein-coupled cholecystokinin (CCK) receptor expressed in the natural milieu of the rat pancreatic acinar cell and in a model cell system, the CHO-CCKR cell, after occupation with fluorescent agonist and antagonist. Lateral diffusion characteristics were distinct in each type of cell and for receptors occupied by each type of ligand, fluorescent agonist, rhodamine-Gly-[(Nle28,31)CCK-26-33], and fluorescent antagonist, rhodamine-Gly-[(D-Trp30,Nle28,31)CCK-26-32]-phenethyl ester. Multiple states of mobility were detected for CCK receptors. The slowest population of mobile receptors on the CHO-CCKR cells moved at similar rates when occupied by both antagonist and agonist, while the faster-moving populations moved at a faster rate when occupied with antagonist than with agonist. The fastest component of mobile receptors may reflect unconstrained interactions of the antagonist-occupied receptors with signaling or anchoring structures, while the slowest component may represent the fraction of ligand-occupied receptors that ultimately undergo internalization. The intermediate mobility states may reflect receptor interactions with signal transduction and regulatory machinery. While only a single population of mobile receptors was demonstrable on the acinar cells, increased ligand concentrations (agonist and antagonist) resulted in increased percentages of mobile receptors, suggesting a stoichiometric limitation of immobilizing molecular constraints. Inhibition of protein kinase C had no significant effect on the lateral mobility of agonist-occupied CCK receptors.

Original languageEnglish (US)
Pages (from-to)237-246
Number of pages10
JournalJournal of Fluorescence
Issue number3
StatePublished - 2001


  • Fluorescence recovery after photobleaching
  • G protein-coupled receptors
  • Lateral mobility
  • Membrane receptors

ASJC Scopus subject areas

  • Biochemistry
  • Spectroscopy
  • Clinical Biochemistry


Dive into the research topics of 'Multiple ligand and cell-dependent states of lateral mobility of plasmalemmal G protein-coupled cholecystokinin receptors'. Together they form a unique fingerprint.

Cite this