TY - JOUR
T1 - Mitochondrial genomic variation in dementia with Lewy bodies
T2 - association with disease risk and neuropathological measures
AU - Valentino, Rebecca R.
AU - Ramnarine, Chloe
AU - Heckman, Michael G.
AU - Johnson, Patrick W.
AU - Soto-Beasley, Alexandra I.
AU - Walton, Ronald L.
AU - Koga, Shunsuke
AU - Kasanuki, Koji
AU - Murray, Melissa E.
AU - Uitti, Ryan J.
AU - Fields, Julie A.
AU - Botha, Hugo
AU - Ramanan, Vijay K.
AU - Kantarci, Kejal
AU - Lowe, Val J.
AU - Jack, Clifford R.
AU - Ertekin-Taner, Nilufer
AU - Savica, Rodolfo
AU - Graff-Radford, Jonathan
AU - Petersen, Ronald C.
AU - Parisi, Joseph E.
AU - Reichard, R. Ross
AU - Graff-Radford, Neill R.
AU - Ferman, Tanis J.
AU - Boeve, Bradley F.
AU - Wszolek, Zbigniew K.
AU - Dickson, Dennis W.
AU - Ross, Owen A.
N1 - Funding Information:
Shunsuke Koga receives funding from CurePSP and the Rainwater Charitable Foundation.. Koji Kasanuki is supported by JSPS KAKENHI grant number 19K17119 (Japan). Melissa E. Murray receives funding from the State of Florida (20A22), LEADS Neuropathology Core (U01AG057195), and the Chan Zuckerberg Initiative Collaborative Pairs Grant, which are paid directly to the institute. Julie A. Fields is supported by NIA (U54AG 44170, RF1AG 57547, U19AG 63911, R01AG 68128, U01AG 45390, R43AG 65088) and NINDS grants (UH3NS 95495, U01NS 100620), as well as Boston Scientific and PCORI (CER-1306-01897). Funding is paid directly to the institute. Hugo Botha is supported by NIH/NIDCD (R01 DC12519-06), NIA (U19 AG63911-02 and P30 AG62677-02), and NINDS (RO3 NS114365-01) grants, of which are paid directly to the institute. Vijay K. Ramanan receives research support from the NIH (NIA, NCI). Kejal Kantarci is supported by NIH grants (P30 AG62677, U01 NS100620, RF1 AG57547); Alzheimer’s Drug Discovery Foundation; Robert H. and Clarice Smith and Abigail Van Buren Alzheimer s Disease Research Program of the Mayo Foundation; Schuller Foundation; and the Katrine B. Andersen Professorship. Clifford R. Jack is supported by NIH, GHR Foundation, and the Alexander Family Alzheimer’s Disease Research Professorship of the Mayo Clinic. Jonathan Graff-Radford is supported by NIH. Nilufer Ertekin-Taner receives funding from NIH-NIA (U01 AG046139, RF1 AG051504, and R01 AG051504). Jonathan Graff-Radford and Ronald C. Petersen receive funding from NIH. R. Ross Reichard is supported by funding from Mayo Clinic, NIA, NHLBI, and ADRC, which are all paid to the institution. Bradley F. Boeve is supported by NIH grants (P30 AG62677, U01 NS100620, R34 AG056639); the Robert H. and Clarice Smith and Abigail Van Buren Alzheimer s Disease Research Program of the Mayo Foundation; the Lewy Body Dementia Association; the Mayo Clinic Dorothy and Harry T. Mangurian Jr. Lewy Body Dementia Program; the Little Family Foundation; the Turner Foundation. Zbigniew K. Wszolek is partially supported by the Mayo Clinic Center for Regenerative Medicine, Mayo Clinic in Florida Focused Research Team Program, the gifts from The Sol Goldman Charitable Trust, and the Donald G. and Jodi P. Heeringa Family, the Haworth Family Professorship in Neurodegenerative Diseases fund, and The Albertson Parkinson's Research Foundation. Owen A. Ross and Dennis W. Dickson are both supported by NINDS Tau Center without Walls Program (U54-NS100693) and NIH (UG3-NS104095). DWD receives research support from the NIH (P30 AG062677; U54-NS100693; P01-AG003949), CurePSP, the Tau Consortium, and the Robert E. Jacoby Professorship. OAR is supported by NIH (P50-NS072187; R01- NS078086; U54-NS100693; U54- NS110435), DOD (W81XWH-17-1-0249) The Michael J. Fox Foundation, The Little Family Foundation, the Mangurian Foundation Lewy Body Dementia Program at Mayo Clinic, the Turner Foundation, Mayo Clinic Foundation, and the Center for Individualized Medicine. Mayo Clinic is also an LBD Center without Walls (U54-NS110435). Samples included in this study were clinical controls from Mayo Clinic Rochester and Mayo Clinic Jacksonville as part of the Alzheimer’s Disease Research Center (P30 AG062677) and the Mayo Clinic Study of Aging (U01 AG006786) or tissue donations to the Mayo Clinic Brain Bank in Jacksonville which is supported by CurePSP and Mayo Clinic funding.
Funding Information:
We would like to thank all those who contributed towards our research, particularly the patients and families who donated brain, blood, and DNA samples—without their donation this study would not have been possible. We also thank Audrey Strongosky for processing research subjects’ consents, drawing bloods, and handling collection procedures, as well as Linda G. Rousseau, Virginia R. Phillips, and Monica Castanedes‐Casey for their continuous commitment, technical support, and teamwork. Mayo Clinic is an American Parkinson Disease Association (APDA) Mayo Clinic Information and Referral Center, an APDA Center for Advanced Research, and the Mayo Clinic Lewy Body Dementia Association (LBDA) Research Center of Excellence.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Dementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after parkinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter OXPHOS efficiency and define individuals to specific mtDNA haplogroups. This study investigates if mtDNA haplogroup background affects clinical DLB risk and neuropathological disease severity. 360 clinical DLB cases, 446 neuropathologically confirmed Lewy body disease (LBD) cases with a high likelihood of having DLB (LBD-hDLB), and 910 neurologically normal controls had European mtDNA haplogroups defined using Agena Biosciences MassARRAY iPlex technology. 39 unique mtDNA variants were genotyped and mtDNA haplogroups were assigned to mitochondrial phylogeny. Striatal dopaminergic degeneration, neuronal loss, and Lewy body counts were also assessed in different brain regions in LBD-hDLB cases. Logistic regression models adjusted for age and sex were used to assess associations between mtDNA haplogroups and risk of DLB or LBD-hDLB versus controls in a case-control analysis. Additional appropriate regression models, adjusted for age at death and sex, assessed associations of haplogroups with each different neuropathological outcome measure. No mtDNA haplogroups were significantly associated with DLB or LBD-hDLB risk after Bonferroni correction.Haplogroup H suggests a nominally significant reduced risk of DLB (OR=0.61, P=0.006) but no association of LBD-hDLB (OR=0.87, P=0.34). The haplogroup H observation in DLB was consistent after additionally adjusting for the number of APOE ε4 alleles (OR=0.59, P=0.004). Haplogroup H also showed a suggestive association with reduced ventrolateral substantia nigra neuronal loss (OR=0.44, P=0.033). Mitochondrial haplogroup H may be protective against DLB risk and neuronal loss in substantia nigra regions in LBD-hDLB cases but further validation is warranted.
AB - Dementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after parkinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter OXPHOS efficiency and define individuals to specific mtDNA haplogroups. This study investigates if mtDNA haplogroup background affects clinical DLB risk and neuropathological disease severity. 360 clinical DLB cases, 446 neuropathologically confirmed Lewy body disease (LBD) cases with a high likelihood of having DLB (LBD-hDLB), and 910 neurologically normal controls had European mtDNA haplogroups defined using Agena Biosciences MassARRAY iPlex technology. 39 unique mtDNA variants were genotyped and mtDNA haplogroups were assigned to mitochondrial phylogeny. Striatal dopaminergic degeneration, neuronal loss, and Lewy body counts were also assessed in different brain regions in LBD-hDLB cases. Logistic regression models adjusted for age and sex were used to assess associations between mtDNA haplogroups and risk of DLB or LBD-hDLB versus controls in a case-control analysis. Additional appropriate regression models, adjusted for age at death and sex, assessed associations of haplogroups with each different neuropathological outcome measure. No mtDNA haplogroups were significantly associated with DLB or LBD-hDLB risk after Bonferroni correction.Haplogroup H suggests a nominally significant reduced risk of DLB (OR=0.61, P=0.006) but no association of LBD-hDLB (OR=0.87, P=0.34). The haplogroup H observation in DLB was consistent after additionally adjusting for the number of APOE ε4 alleles (OR=0.59, P=0.004). Haplogroup H also showed a suggestive association with reduced ventrolateral substantia nigra neuronal loss (OR=0.44, P=0.033). Mitochondrial haplogroup H may be protective against DLB risk and neuronal loss in substantia nigra regions in LBD-hDLB cases but further validation is warranted.
KW - Dementia with Lewy-bodies
KW - Lewy body disease
KW - Mitochondrial DNA
KW - Mitochondrial haplogroups
KW - Neuropathology
UR - http://www.scopus.com/inward/record.url?scp=85134097951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134097951&partnerID=8YFLogxK
U2 - 10.1186/s40478-022-01399-4
DO - 10.1186/s40478-022-01399-4
M3 - Article
C2 - 35836284
AN - SCOPUS:85134097951
SN - 2051-5960
VL - 10
JO - Acta Neuropathologica Communications
JF - Acta Neuropathologica Communications
IS - 1
M1 - 103
ER -