TY - JOUR
T1 - Mesenchymal stem/stromal cell-derived extracellular vesicles elicit better preservation of the intra-renal microvasculature than renal revascularization in pigs with renovascular disease
AU - Ferguson, Christopher M.
AU - Farahani, Rahele A.
AU - Zhu, Xiang Yang
AU - Tang, Hui
AU - Jordan, Kyra L.
AU - Saadiq, Ishran M.
AU - Lerman, Amir
AU - Lerman, Lilach O.
AU - Eirin, Alfonso
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4
Y1 - 2021/4
N2 - Background: Percutaneous transluminal renal angioplasty (PTRA) confers clinical and mortality benefits in select ‘high-risk’ patients with renovascular disease (RVD). Intra-renal-delivered extracellular vesicles (EVs) released from mesenchymal stem/stromal cells (MSCs) protect the kidney in experimental RVD, but have not been compared side-by-side to clinically applied interventions, such as PTRA. We hypothesized that MSC-derived EVs can comparably protect the post-stenotic kidney via direct tissue effects. Methods: Five groups of pigs (n = 6 each) were studied after 16 weeks of RVD, RVD treated 4 weeks earlier with either PTRA or MSC-derived EVs, and normal controls. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multi-detector CT, and renal microvascular architecture (3D micro CT) and injury pathways ex vivo. Results: Despite sustained hypertension, EVs conferred greater improvement of intra-renal microvascular and peritubular capillary density compared to PTRA, associated with attenuation of renal inflammation, oxidative stress, and tubulo-interstitial fibrosis. Nevertheless, stenotic kidney RBF and GFR similarly rose in both PTRA-and EV-treated pigs compared RVD + Sham. mRNA sequencing reveled that EVs were enriched with pro-angiogenic, anti-inflammatory, and antioxidants genes. Conclusion: MSC-derived EVs elicit a better preservation of the stenotic kidney microvascula-ture and greater attenuation of renal injury and fibrosis compared to PTRA, possibly partly attributed to their cargo of vasculo-protective genes. Yet, both strategies similarly improve renal hemodynamics and function. These observations shed light on diverse mechanisms implicated in improvement of post-stenotic kidney function and position EVs as a promising therapeutic intervention in RVD.
AB - Background: Percutaneous transluminal renal angioplasty (PTRA) confers clinical and mortality benefits in select ‘high-risk’ patients with renovascular disease (RVD). Intra-renal-delivered extracellular vesicles (EVs) released from mesenchymal stem/stromal cells (MSCs) protect the kidney in experimental RVD, but have not been compared side-by-side to clinically applied interventions, such as PTRA. We hypothesized that MSC-derived EVs can comparably protect the post-stenotic kidney via direct tissue effects. Methods: Five groups of pigs (n = 6 each) were studied after 16 weeks of RVD, RVD treated 4 weeks earlier with either PTRA or MSC-derived EVs, and normal controls. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multi-detector CT, and renal microvascular architecture (3D micro CT) and injury pathways ex vivo. Results: Despite sustained hypertension, EVs conferred greater improvement of intra-renal microvascular and peritubular capillary density compared to PTRA, associated with attenuation of renal inflammation, oxidative stress, and tubulo-interstitial fibrosis. Nevertheless, stenotic kidney RBF and GFR similarly rose in both PTRA-and EV-treated pigs compared RVD + Sham. mRNA sequencing reveled that EVs were enriched with pro-angiogenic, anti-inflammatory, and antioxidants genes. Conclusion: MSC-derived EVs elicit a better preservation of the stenotic kidney microvascula-ture and greater attenuation of renal injury and fibrosis compared to PTRA, possibly partly attributed to their cargo of vasculo-protective genes. Yet, both strategies similarly improve renal hemodynamics and function. These observations shed light on diverse mechanisms implicated in improvement of post-stenotic kidney function and position EVs as a promising therapeutic intervention in RVD.
KW - Extracellular vesicles
KW - Mesenchymal stem/stromal cells
KW - Microvasculature
KW - Renovascular disease
KW - Revascularization
UR - http://www.scopus.com/inward/record.url?scp=85103862233&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103862233&partnerID=8YFLogxK
U2 - 10.3390/cells10040763
DO - 10.3390/cells10040763
M3 - Article
C2 - 33807246
AN - SCOPUS:85103862233
SN - 2073-4409
VL - 10
JO - Cells
JF - Cells
IS - 4
M1 - 763
ER -