TY - JOUR
T1 - Loss of homeostatic microglial phenotype in CSF1R-related Leukoencephalopathy
AU - Kempthorne, Liam
AU - Yoon, Hyejin
AU - Madore, Charlotte
AU - Smith, Scott
AU - Wszolek, Zbigniew K.
AU - Rademakers, Rosa
AU - Kim, Jungsu
AU - Butovsky, Oleg
AU - Dickson, Dennis W.
N1 - Funding Information:
L.K. was supported by Mayo Clinic Foundation. H.Y. was supported by Mayo Clinic Graduate School of Biomedical Sciences. R.R. was supported by R35 NS097261; UH3/UG3 NS103870; Consortium for Frontotemporal dementia; The Bluefield Project to Cure FTD; current address: VIB-UAntwerp Center for Molecular Neurology. Z.K.W was partially supported by the NIH/NIA (primary) and NIH/NINDS (secondary) U01 AG045390, Mayo Clinic Center for Regenerative Medicine, the gifts from The Sol Goldman Charitable Trust, and the Donald G. and Jodi P. Heeringa Family, and by the Haworth Family Professorship in Neurodegenerative Diseases fund. ZKW serves on the Scientific Advisory Board of the Translational and Clinical Research (TCR) Flagship Programme funded by the National Medical Research Council (NMRC) Singapore. He serves as PI or Co-PI on Abbvie, Inc. grants (M15–562, M15–563, and laboratory based grant), Biogen, Inc. (228PD201), Mayo Clinic American Parkinson Disease Association (APDA) Information and Referral Center (PI) and Mayo Clinic APDA Center for Advanced Research (CoPI). J.K. was supported by NIH awards: R01 AG054102, R01 AG053500, R01 AG053242, R21 AG050804, P50 AG016574, and P50 AG05681 and the GHR Foundation. O.B. was supported by NIH-NINDS (R01 NS088137; R21 NS104609, R21 NS101673), NIH-NIA (R01 AG051812, R01 AG054672), NIH-NEI (R01 EY027921); National Multiple Sclerosis Society (5092A1), Amyotrophic Lateral Sclerosis Association (19-SI-486), Nancy Davis Foundation Faculty Award, Cure Alzheimer’s Fund, National Health and Medical Research Council (Australia; RG180378); President and Fellows of Harvard College. D.W.D. was supported by NIH awards: R01 AG057181, UG3 NS104095, UG3 NS103870, R01 AG054449, P01 AG003949, U54 NS100693, RF1 AG051504, P01 NS084974, P30 AG062677, as well as the Mangurian Foundation, the Rainwater Charitable Foundation and the Robert E. Jacoby Professorship.
Publisher Copyright:
© 2020 The Author(s).
PY - 2020/5/19
Y1 - 2020/5/19
N2 - Microglia are resident macrophages of the central nervous system, and their unique molecular signature is dependent upon CSF-1 signaling. Previous studies have demonstrated the importance of CSF-1R in survival and development of microglia in animal models, but the findings are of uncertain relevance to understanding the influence of CSF-1R on microglia in humans. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) [also known as adult onset leukoencephalopathy with spheroids and pigmented glia (ALSP)] is a neurodegenerative disorder primarily affecting cerebral white matter, most often caused by mutations of CSF1R. Therefore, we hypothesized that the molecular profile of microglia may be affected in HDLS. Semi-quantitative immunohistochemistry and quantitative transcriptomic profiling revealed reduced expression of IBA-1 and P2RY12 in both white and gray matter microglia of HDLS. In contrast, there was increased expression of CD68 and CD163 in microglia in affected white matter. In addition, expression of selective and specific microglial markers, including P2RY12, CX3CR1 and CSF-1R, were reduced in affected white matter. These results suggest that microglia in white matter in HDLS lose their homeostatic phenotype. Supported by gene ontology analysis, it is likely that an inflammatory phenotype is a key pathogenic feature of microglia in vulnerable brain regions of HDLS. Our findings suggest a potential mechanism of disease pathogenesis by linking aberrant CSF-1 signaling to altered microglial phenotype. They also support the idea that HDLS may be a primary microgliopathy. We observed increased expression of CSF-2 in gray matter compared to affected white matter, which may contribute to selective vulnerability of white matter in HDLS. Our findings suggest that methods that restore the homeostatic phenotype of microglia might be considered treatment approaches in HDLS.
AB - Microglia are resident macrophages of the central nervous system, and their unique molecular signature is dependent upon CSF-1 signaling. Previous studies have demonstrated the importance of CSF-1R in survival and development of microglia in animal models, but the findings are of uncertain relevance to understanding the influence of CSF-1R on microglia in humans. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) [also known as adult onset leukoencephalopathy with spheroids and pigmented glia (ALSP)] is a neurodegenerative disorder primarily affecting cerebral white matter, most often caused by mutations of CSF1R. Therefore, we hypothesized that the molecular profile of microglia may be affected in HDLS. Semi-quantitative immunohistochemistry and quantitative transcriptomic profiling revealed reduced expression of IBA-1 and P2RY12 in both white and gray matter microglia of HDLS. In contrast, there was increased expression of CD68 and CD163 in microglia in affected white matter. In addition, expression of selective and specific microglial markers, including P2RY12, CX3CR1 and CSF-1R, were reduced in affected white matter. These results suggest that microglia in white matter in HDLS lose their homeostatic phenotype. Supported by gene ontology analysis, it is likely that an inflammatory phenotype is a key pathogenic feature of microglia in vulnerable brain regions of HDLS. Our findings suggest a potential mechanism of disease pathogenesis by linking aberrant CSF-1 signaling to altered microglial phenotype. They also support the idea that HDLS may be a primary microgliopathy. We observed increased expression of CSF-2 in gray matter compared to affected white matter, which may contribute to selective vulnerability of white matter in HDLS. Our findings suggest that methods that restore the homeostatic phenotype of microglia might be considered treatment approaches in HDLS.
KW - Adult leukoencephalopathy with spheroids and pigmented glia (ALSP)
KW - CSF-1
KW - CSF-1R
KW - CSF-1R-related leukoencephalopathy
KW - Hereditary diffuse leukoencephalopathy with spheroids (HDLS)
KW - Immunohistochemistry
KW - Microglia
KW - RNA expression profiling
UR - http://www.scopus.com/inward/record.url?scp=85084961587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084961587&partnerID=8YFLogxK
U2 - 10.1186/s40478-020-00947-0
DO - 10.1186/s40478-020-00947-0
M3 - Article
C2 - 32430064
AN - SCOPUS:85084961587
SN - 2051-5960
VL - 8
JO - Acta Neuropathologica Communications
JF - Acta Neuropathologica Communications
IS - 1
M1 - 72
ER -