TY - JOUR
T1 - Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes
AU - Mazzone, Amelia
AU - Tietz, Pamela
AU - Jefferson, John
AU - Pagano, Richard
AU - LaRusso, Nicholas F.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/2
Y1 - 2006/2
N2 - Canalicular bile is formed by the osmotic filtration of water in response to osmotic gradients generated by active transport at the apical and basolateral plasma membrane domains of hepatocytes. We recently demonstrated that mixed plasma membrane fractions isolated from rat hepatocyte couplets contain lipid microdomains ("rafts") enriched in cholesterol and sphingolipids and AQP8 and 9. We isolated lipid microdomains from hepatocyte apical and basolateral plasma membrane domains using Triton X-100 as detergent, and characterized their lipid and protein composition. A Triton-insoluble band ("raft fraction") at the 5%/30% sucrose interface in both apical and basolateral fractions was enriched for alkaline phosphatase (apical) and Na/K ATPase (basolateral) and was negative for amino peptidase-N. This detergent-insoluble band was also positive for caveolin-1 (a "raft" associated protein) and negative for clathrin (a "raft" negative protein). Lipid analysis showed that, the Triton-insoluble fraction was highly enriched in cholesterol and sphingolipids. Immunofluorescence staining on hepatocyte couplets for both caveolin-1 and cholera toxin B showed a punctate distribution on both the apical and basolateral plasma membranes, consistent with localized membrane microdomains. Dot blot analysis showed that the "raft" associated ganglioside GM1 was enriched in the detergent-insoluble fraction both domains. Furthermore, exposure of isolated hepatocytes to glucagon, a choleretic agonist, significantly increased the expression of AQP8 associated with the apical microdomain fractions but had no effect on AQP9 expression in the basolateral microdomain fractions. In conclusion, "rafts" represent target microdomains for exocytic insertion and retrieval of "flux proteins", including AQPs, involved in canalicular bile secretion.
AB - Canalicular bile is formed by the osmotic filtration of water in response to osmotic gradients generated by active transport at the apical and basolateral plasma membrane domains of hepatocytes. We recently demonstrated that mixed plasma membrane fractions isolated from rat hepatocyte couplets contain lipid microdomains ("rafts") enriched in cholesterol and sphingolipids and AQP8 and 9. We isolated lipid microdomains from hepatocyte apical and basolateral plasma membrane domains using Triton X-100 as detergent, and characterized their lipid and protein composition. A Triton-insoluble band ("raft fraction") at the 5%/30% sucrose interface in both apical and basolateral fractions was enriched for alkaline phosphatase (apical) and Na/K ATPase (basolateral) and was negative for amino peptidase-N. This detergent-insoluble band was also positive for caveolin-1 (a "raft" associated protein) and negative for clathrin (a "raft" negative protein). Lipid analysis showed that, the Triton-insoluble fraction was highly enriched in cholesterol and sphingolipids. Immunofluorescence staining on hepatocyte couplets for both caveolin-1 and cholera toxin B showed a punctate distribution on both the apical and basolateral plasma membranes, consistent with localized membrane microdomains. Dot blot analysis showed that the "raft" associated ganglioside GM1 was enriched in the detergent-insoluble fraction both domains. Furthermore, exposure of isolated hepatocytes to glucagon, a choleretic agonist, significantly increased the expression of AQP8 associated with the apical microdomain fractions but had no effect on AQP9 expression in the basolateral microdomain fractions. In conclusion, "rafts" represent target microdomains for exocytic insertion and retrieval of "flux proteins", including AQPs, involved in canalicular bile secretion.
UR - http://www.scopus.com/inward/record.url?scp=33644503593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644503593&partnerID=8YFLogxK
U2 - 10.1002/hep.21039
DO - 10.1002/hep.21039
M3 - Article
C2 - 16440338
AN - SCOPUS:33644503593
SN - 0270-9139
VL - 43
SP - 287
EP - 296
JO - Hepatology
JF - Hepatology
IS - 2
ER -