Abstract
INTRODUCTION: Phosphorylated ubiquitin (p-S65-Ub) is generated during PINK1-PRKN mitophagy as a specific marker of mitochondrial damage. Despite the widespread deposition of p-S65-Ub in aged and diseased human brain, the genetic contribution to its accumulation remains unclear. METHODS: To identify novel mitophagy regulators, we performed a genome-wide association study using p-S65-Ub level as a quantitative trait in 1012 autopsy-confirmed Lewy body disease (LBD) samples. RESULTS: We identified a significant genome-wide association with p-S65-Ub for rs429358 (apolipoprotein E ε4 [APOE4]) and a suggestive association for rs6480922 (ZMIZ1). APOE4 was associated with higher p-S65-Ub levels and greater neuropathological burden. Functional validation in mouse and human induced pluripotent stem cell (iPSC) models confirmed APOE4-mediated mitophagy alterations. Intriguingly, ZMIZ1 rs6480922 was associated with lower p-S65-Ub levels, reduced neuropathological load, and increased brain weight, indicating a potential protective role. DISCUSSION: Our findings underscore the importance of mitochondrial quality control in LBD pathogenesis and nominate regulators that may contribute to disease risk or resilience. Highlights: p-S65-Ub levels were used as a quantitative marker of mitochondrial damage. A GWAS identified two genetic variants that modify mitophagy in LBD autopsy brain. APOE4 was associated with increased p-S65-Ub accumulation and neuropathology. APOE4 altered mitophagy via pathology-dependent and pathology-independent mechanisms. ZMIZ1 was linked to reduced p-S65-Ub and neuropathology indicative of protection.
Original language | English (US) |
---|---|
Article number | e70198 |
Journal | Alzheimer's and Dementia |
Volume | 21 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2025 |
Keywords
- GWAS
- PINK1
- PRKN
- Parkin
- Parkinson's disease
- ZMIZ1
- autophagy
- mitochondria
- phosphorylated ubiquitin
- ubiquitin
ASJC Scopus subject areas
- Epidemiology
- Health Policy
- Developmental Neuroscience
- Clinical Neurology
- Geriatrics and Gerontology
- Cellular and Molecular Neuroscience
- Psychiatry and Mental health