Gemcitabine and arabinosylcytosin pharmacogenomics: Genome-wide association and drug response biomarkers

Liang Li, Brooke L. Fridley, Krishna Kalari, Gregory Jenkins, Anthony Batzler, Richard M. Weinshilboum, Liewei Wang

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


Cancer patients show large individual variation in their response to chemotherapeutic agents. Gemcitabine (dFdC) and AraC, two cytidine analogues, have shown significant activity against a variety of tumors. We previously used expression data from a lymphoblastoid cell line-based model system to identify genes that might be important for the two drug cytotoxicity. In the present study, we used that same model system to perform a genome-wide association (GWA) study to test the hypothesis that common genetic variation might influence both gene expression and response to the two drugs. Specifically, genome-wide single nucleotide polymorphisms (SNPs) and mRNA expression data were obtained using the Illumina 550K® Human Hap550 SNP Chip and Affymetrix U133 Plus 2.0 GeneChip, respectively, for 174 ethnically-defined "Human Variation Panel" lymphoblastoid cell lines. Gemcitabine and AraC cytotoxicity assays were performed to obtain IC50 values for the cell lines. We then performed GWA studies with SNPs, gene expression and IC50 of these two drugs. This approach identified SNPs that were associated with gemcitabine or AraC IC50 values and with the expression regulation for 29 genes or 30 genes, respectively. One SNP in IQGAP2 (rs3797418) was significantly associated with variation in both the expression of multiple genes and gemcitabine and AraC IC50. A second SNP in TGM3 (rs6082527) was also significantly associated with multiple gene expression and gemcitabine IC50. To confirm the association results, we performed siRNA knock down of selected genes with expression that was associated with rs3797418 and rs6082527 in tumor cell and the knock down altered gemcitabine or AraC sensitivity, confirming our association study results. These results suggest that the application of GWA approaches using cell-based model systems, when combined with complementary functional validation, can provide insights into mechanisms responsible for variation in cytidine analogue response.

Original languageEnglish (US)
Article numbere7765
JournalPloS one
Issue number11
StatePublished - Nov 9 2009

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Gemcitabine and arabinosylcytosin pharmacogenomics: Genome-wide association and drug response biomarkers'. Together they form a unique fingerprint.

Cite this