TY - JOUR
T1 - FOXO transcription factors are critical regulators of diabetes-related muscle atrophy
AU - O’Neill, Brian T.
AU - Bhardwaj, Gourav
AU - Penniman, Christie M.
AU - Krumpoch, Megan T.
AU - Suarez Beltran, Pablo A.
AU - Klaus, Katherine
AU - Poro, Kennedy
AU - Li, Mengyao
AU - Pan, Hui
AU - Dreyfuss, Jonathan M.
AU - Sreekumaran Nair, K.
AU - Ronald Kahn, C.
N1 - Funding Information:
This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), grants R01-DK-031036 and R01-DK-033201 (to C.R.K.) and R01-DK-41973 and U24-DK-100469 (to K.S.N.). B.T.O. was funded by a K08 training award from the NIDDK (K08-DK-100543); an R03 award from the NIDDK (R03-DK-112003); a Mayo Clinic Metabolomics Resource Core grant, U24-DK-100469, from the NIDDK, which originates from the NIH Director’s Common Fund; and Mayo Clinic Clinical and Translational Science Awards grant UL1-TR-000135 from National Center for Advancing Translational Sciences of the NIH. The Joslin Diabetes and Endocrinology Research Center core facility was used for part of this work (P30-DK-36836).
Publisher Copyright:
© 2018 by the American Diabetes Association.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - Insulin deficiency and uncontrolled diabetes lead to a catabolic state with decreased muscle strength, contributing to disease-related morbidity. FoxO transcription factors are suppressed by insulin and thus are key mediators of insulin action. To study their role in diabetic muscle wasting, we created mice with muscle-specific triple knockout of FoxO1/3/4 and induced diabetes in these M-FoxO-TKO mice with streptozotocin (STZ). Muscle mass and myofiber area were decreased 20–30% in STZ-Diabetes mice due to increased ubiquitin-proteasome degradation and autophagy alterations, characterized by increased LC3-containing vesicles, and elevated levels of phosphorylated ULK1 and LC3-II. Both the muscle loss and markers of increased degradation/autophagy were completely prevented in STZ FoxO-TKO mice. Transcriptomic analyses revealed FoxO-dependent increases in ubiquitin-mediated proteolysis pathways in STZ-Diabetes, including regulation of Fbxo32 (Atrogin1), Trim63 (MuRF1), Bnip3L, and Gabarapl. These same genes were increased 1.4- to 3.3-fold in muscle from humans with type 1 diabetes after short-term insulin deprivation. Thus, FoxO-regulated genes play a rate-limiting role in increased protein degradation and muscle atrophy in insulin-deficient diabetes.
AB - Insulin deficiency and uncontrolled diabetes lead to a catabolic state with decreased muscle strength, contributing to disease-related morbidity. FoxO transcription factors are suppressed by insulin and thus are key mediators of insulin action. To study their role in diabetic muscle wasting, we created mice with muscle-specific triple knockout of FoxO1/3/4 and induced diabetes in these M-FoxO-TKO mice with streptozotocin (STZ). Muscle mass and myofiber area were decreased 20–30% in STZ-Diabetes mice due to increased ubiquitin-proteasome degradation and autophagy alterations, characterized by increased LC3-containing vesicles, and elevated levels of phosphorylated ULK1 and LC3-II. Both the muscle loss and markers of increased degradation/autophagy were completely prevented in STZ FoxO-TKO mice. Transcriptomic analyses revealed FoxO-dependent increases in ubiquitin-mediated proteolysis pathways in STZ-Diabetes, including regulation of Fbxo32 (Atrogin1), Trim63 (MuRF1), Bnip3L, and Gabarapl. These same genes were increased 1.4- to 3.3-fold in muscle from humans with type 1 diabetes after short-term insulin deprivation. Thus, FoxO-regulated genes play a rate-limiting role in increased protein degradation and muscle atrophy in insulin-deficient diabetes.
UR - http://www.scopus.com/inward/record.url?scp=85061311884&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061311884&partnerID=8YFLogxK
U2 - 10.2337/db18-0416
DO - 10.2337/db18-0416
M3 - Article
C2 - 30523026
AN - SCOPUS:85061311884
SN - 0012-1797
VL - 68
SP - 556
EP - 570
JO - Diabetes
JF - Diabetes
IS - 3
ER -