Fluorescence lifetime distributions in proteins

J. R. Alcala, E. Gratton, F. G. Prendergast

Research output: Contribution to journalArticlepeer-review

249 Scopus citations


The fluorescence lifetime value of tryptophan residues varies by more than a factor of 100 in different proteins and is determined by several factors, which include solvent exposure and interactions with other elements of the protein matrix. Because of the variety of different elements that can alter the lifetime value and the sensitivity to the particular environment of the tryptophan residue, it is likely that non-unique lifetime values result in protein systems. The emission decay of most proteins can be satisfactorily described only using several exponential components. Here it is proposed that continuous lifetime distributions can better represent the observed decay. An approach based on protein dynamics is presented, which provides fluorescence lifetime distribution functions for single tryptophan residue proteins. First, lifetime distributions for proteins interconverting between two conformations, each characterized by a different lifetime value, are derived. The evolution of the lifetime values as a function of the interconversion rate is studied. In this case lifetime distributions can be obtained from a distribution of rates of interconversion between the two conformations. Second, the existence of a continuum of energy substates within a given conformation was considered. The occupation of a particular energy substate at a given temperature is proportional to the Boltzmann factor. The density of energy states of the potential well depends upon the width of the well, which determines the degree of freedom the residue can move in the conformational space. Lifetime distributions can be obtained by association of each energy substate with a different lifetime value and assuming that the average conformation can change as the energy of the substate is increased.(ABSTRACT TRUNCATED AT 250 WORDS)

Original languageEnglish (US)
Pages (from-to)597-604
Number of pages8
JournalBiophysical Journal
Issue number4
StatePublished - 1987

ASJC Scopus subject areas

  • Biophysics


Dive into the research topics of 'Fluorescence lifetime distributions in proteins'. Together they form a unique fingerprint.

Cite this