Facilitation of the inhibitory transmission by gastrin-releasing peptide in the anterior cingulate cortex

Xiao Yan Cao, Valentina Mercaldo, Pingyang Li, Long Jun Wu, Min Zhuo

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Gastrin-releasing peptide (GRP) has been proposed as a peptidergic molecule for behavioral fear and itching. Immunohistochemistry and in situ hybridization studies have shown that GRP and GRP receptor are widely distributed in forebrain areas. Less information is available for the functional action for GRP in the prefrontal cortex including the anterior cingulate cortex (ACC). Here we used whole-cell patch-clamp recording technique to study the modulation of synaptic transmission by GRP in the ACC. We found that GRP increased the frequency of sIPSCs recorded while had no significant effect on sEPSCs in ACC pyramidal neurons. The facilitatory effect of GRP on sIPSCs was blocked by the GRP receptor antagonist, RC3095. In the presence of TTX, however, GRP had no effect on the mIPSCs. Therefore, activation of GRP receptor may facilitate the excitation of the interneurons and enhanced spontaneous GABAergic, but not glutamatergic neurotransmission. Similar results on GRP modulation of GABAergic transmission were observed in the insular cortex and amygdala, suggesting a general possible effect of GRP on cortical inhibitory transmission. Our results suggest that GRP receptor is an important regulator of inhibitory circuits in forebrain areas.

Original languageEnglish (US)
Article number52
JournalMolecular Pain
StatePublished - Sep 13 2010

ASJC Scopus subject areas

  • Molecular Medicine
  • Cellular and Molecular Neuroscience
  • Anesthesiology and Pain Medicine


Dive into the research topics of 'Facilitation of the inhibitory transmission by gastrin-releasing peptide in the anterior cingulate cortex'. Together they form a unique fingerprint.

Cite this