TY - JOUR
T1 - Excretion of urine extracellular vesicles bearing markers of activated immune cells and calcium/phosphorus physiology differ between calcium kidney stone formers and non-stone formers
AU - Zhang, Jiqing
AU - Kumar, Sanjay
AU - Jayachandran, Muthuvel
AU - Herrera Hernandez, Loren P.
AU - Wang, Stanley
AU - Wilson, Elena M.
AU - Lieske, John C.
N1 - Funding Information:
This study was supported by a pilot grant program from Mayo Clinic Rare Kidney Stone Consortium (U54DK083908) and Oxalosis & Hyperoxaluria Foundation, and partly by the O’Brien Urology Research Center (U54 DK100227), Nephrology and Urology Summer Undergraduate Research Program (R25-DK101405), and Mayo Foundation. The authors were fully responsible for the collection, analysis, and interpretation of data and in writing the manuscript.
Funding Information:
We thank the CSFs and NSFs volunteers for their participation in sample donation for this study. We are grateful to the investigators of the Mayo Clinic Renal Testing Laboratory, Rochester, MN. We attribute our thanks to the Urologist in Department of Urology in Mayo Clinic Rochester, MN who provide the surgical videotape and clinic data for this study.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Backgrounds:: Previous studies have demonstrated that excretion of urinary extracellular vesicles (EVs) from different nephron segments differs between kidney stone formers and non-stone formers (NSFs), and could reflect pathogenic mechanisms of urinary stone disease. In this study we quantified selected populations of specific urinary EVs carrying protein markers of immune cells and calcium/phosphorus physiology in calcium oxalate stone formers (CSFs) compared to non-stone formers (NSFs). Methods: Biobanked urine samples from CSFs (n = 24) undergoing stone removal surgery and age- and sex- matched NSFs (n = 21) were studied. Urinary EVs carrying proteins related to renal calcium/phosphorus physiology (phosphorus transporters (PiT1 and PiT2), Klotho, and fibroblast growth factor 23 (FGF23); markers associated with EV generation (anoctamin-4 (ANO4) and Huntington interacting protein 1 (HIP1)), and markers shed from activated immune cells were quantified by standardized and published method of digital flow cytometry. Results: Urine excretion of calcium, oxalate, phosphorus, and calcium oxalate supersaturation (SS) were significantly higher in CSFs compared to NSFs (P < 0.05). Urinary excretion of EVs with markers of total leukocytes (CD45), neutrophils (CD15), macrophages (CD68), Klotho, FGF23, PiT1, PiT2, and ANO4 were each markedly lower in CSFs than NSFs (P < 0.05) whereas excretion of those with markers of monocytes (CD14), T-Lymphocytes (CD3), B-Lymphocytes (CD19), plasma cells (CD138 plus CD319 positive) were not different between the groups. Urinary excretion of EVs expressing PiT1 and PiT2 negatively (P < 0.05) correlated with urinary phosphorus excretion, whereas excretion of EVs expressing FGF23 negatively (P < 0.05) correlated with both urinary calcium and phosphorus excretion. Urinary EVs with markers of HIP1 and ANO4 correlated negatively (P < 0.05) with clinical stone events and basement membrane calcifications on papillary tip biopsies. Conclusions: Urinary excretion of EVs derived from specific types of activated immune cells and EVs with proteins related to calcium/phosphorus regulation differed between CSFs and NSFs. Further validation of these and other populations of urinary EVs in larger cohort could identify biomarkers that elucidate novel pathogenic mechanisms of calcium stone formation in specific subsets of patients.
AB - Backgrounds:: Previous studies have demonstrated that excretion of urinary extracellular vesicles (EVs) from different nephron segments differs between kidney stone formers and non-stone formers (NSFs), and could reflect pathogenic mechanisms of urinary stone disease. In this study we quantified selected populations of specific urinary EVs carrying protein markers of immune cells and calcium/phosphorus physiology in calcium oxalate stone formers (CSFs) compared to non-stone formers (NSFs). Methods: Biobanked urine samples from CSFs (n = 24) undergoing stone removal surgery and age- and sex- matched NSFs (n = 21) were studied. Urinary EVs carrying proteins related to renal calcium/phosphorus physiology (phosphorus transporters (PiT1 and PiT2), Klotho, and fibroblast growth factor 23 (FGF23); markers associated with EV generation (anoctamin-4 (ANO4) and Huntington interacting protein 1 (HIP1)), and markers shed from activated immune cells were quantified by standardized and published method of digital flow cytometry. Results: Urine excretion of calcium, oxalate, phosphorus, and calcium oxalate supersaturation (SS) were significantly higher in CSFs compared to NSFs (P < 0.05). Urinary excretion of EVs with markers of total leukocytes (CD45), neutrophils (CD15), macrophages (CD68), Klotho, FGF23, PiT1, PiT2, and ANO4 were each markedly lower in CSFs than NSFs (P < 0.05) whereas excretion of those with markers of monocytes (CD14), T-Lymphocytes (CD3), B-Lymphocytes (CD19), plasma cells (CD138 plus CD319 positive) were not different between the groups. Urinary excretion of EVs expressing PiT1 and PiT2 negatively (P < 0.05) correlated with urinary phosphorus excretion, whereas excretion of EVs expressing FGF23 negatively (P < 0.05) correlated with both urinary calcium and phosphorus excretion. Urinary EVs with markers of HIP1 and ANO4 correlated negatively (P < 0.05) with clinical stone events and basement membrane calcifications on papillary tip biopsies. Conclusions: Urinary excretion of EVs derived from specific types of activated immune cells and EVs with proteins related to calcium/phosphorus regulation differed between CSFs and NSFs. Further validation of these and other populations of urinary EVs in larger cohort could identify biomarkers that elucidate novel pathogenic mechanisms of calcium stone formation in specific subsets of patients.
KW - Calcium
KW - Inflammation
KW - Oxalate
KW - Phosphorus
KW - Urinary extracellular vesicles
KW - Urinary stone disease
UR - http://www.scopus.com/inward/record.url?scp=85107371070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107371070&partnerID=8YFLogxK
U2 - 10.1186/s12882-021-02417-8
DO - 10.1186/s12882-021-02417-8
M3 - Article
C2 - 34074247
AN - SCOPUS:85107371070
SN - 1471-2369
VL - 22
JO - BMC Nephrology
JF - BMC Nephrology
IS - 1
M1 - 204
ER -