Considerations for Improving the Portability of Electronic Health Record-Based Phenotype Algorithms

Luke V. Rasmussen, Pascal S. Brandt, Guoqian Jiang, Richard C. Kiefer, Jennifer A. Pacheco, Prakash Adekkanattu, Jessica S. Ancker, Fei Wang, Zhenxing Xu, Jyotishman Pathak, Yuan Luo

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


With the increased adoption of electronic health records, data collected for routine clinical care is used for health outcomes and population sciences research, including the identification of phenotypes. In recent years, research networks, such as eMERGE, OHDSI and PCORnet, have been able to increase statistical power and population diversity by combining patient cohorts. These networks share phenotype algorithms that are executed at each participating site. Here we observe experiences with phenotype algorithm portability across seven research networks and propose a generalizable framework for phenotype algorithm portability. Several strategies exist to increase the portability of phenotype algorithms, reducing the implementation effort needed by each site. These include using a common data model, standardized representation of the phenotype algorithm logic, and technical solutions to facilitate federated execution of queries. Portability is achieved by tradeoffs across three domains: Data, Authoring and Implementation, and multiple approaches were observed in representing portable phenotype algorithms. Our proposed framework will help guide future research in operationalizing phenotype algorithm portability at scale.

Original languageEnglish (US)
Pages (from-to)755-764
Number of pages10
JournalAMIA ... Annual Symposium proceedings. AMIA Symposium
StatePublished - 2019

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Considerations for Improving the Portability of Electronic Health Record-Based Phenotype Algorithms'. Together they form a unique fingerprint.

Cite this