TY - JOUR
T1 - Combinatorial chemoprevention reveals a novel smoothened-independent role of GLI1 in esophageal carcinogenesis
AU - Rizvi, Sumera
AU - DeMars, Cathrine J.
AU - Comba, Andrea
AU - Gainullin, Vladimir G.
AU - Rizvi, Zaheer
AU - Almada, Luciana L.
AU - Wang, Kenneth
AU - Lomberk, Gwen
AU - Fernández-Zapico, Martin E.
AU - Buttar, Navtej S.
PY - 2010/9/1
Y1 - 2010/9/1
N2 - Reflux-induced injury promotes esophageal adenocarcinoma, one of the most rapidly increasing, highly lethal cancers in Western countries. Here, we investigate the efficacy of a combinatorial chemoprevention strategy for esophageal adenocarcinoma and characterize the underlying molecular mechanisms. Specifically, our approach involves the use of ursodeoxycholic acid (Urso) due to its ability to decrease injury-inducing bile salts in combination with Aspirin to mitigate the consequences of injury. We find that Urso-Aspirin combination reduces the risk of adenocarcinoma in vivo in animals with reflux, decreases the proliferation of esophageal adenocarcinoma cells, and downregulates a key cell cycle regulator, CDK2. Mechanistically, using cell growth, luciferase reporter, expression, and chromatin immunoprecipitation assays, we identify GLI1, a Hedgehogregulated transcription factor, as a novel target of Urso-Aspirin combination. We show that GLI1 is upregulated during esophageal carcinogenesis, and GLI1 can bind to the CDK2 promoter and activate its expression. Although the Urso-Aspirin combination downregulates GLI1, the GLI1 overexpression not only abrogates the effect of this combination on proliferation but it also restores CDK-2 expression. These findings support that the chemopreventive effect of the Urso-Aspirin combination occurs, at least in part, through a novel GLI1-CDK2-dependent mechanism. To further understand the regulation of CDK2 by GLI1, both pharmacologic and RNAi-mediated approaches show that GLI1 is a transcriptional activator of CDK2, and this regulation occurs independent of Smoothened, the central transducer of the Hedgehog canonical pathway. Collectively, these results identify a novel GLI1-to-CDK2 pathway in esophageal carcinogenesis, which is a bona fide target for effective combinatorial chemoprevention with Urso and Aspirin.
AB - Reflux-induced injury promotes esophageal adenocarcinoma, one of the most rapidly increasing, highly lethal cancers in Western countries. Here, we investigate the efficacy of a combinatorial chemoprevention strategy for esophageal adenocarcinoma and characterize the underlying molecular mechanisms. Specifically, our approach involves the use of ursodeoxycholic acid (Urso) due to its ability to decrease injury-inducing bile salts in combination with Aspirin to mitigate the consequences of injury. We find that Urso-Aspirin combination reduces the risk of adenocarcinoma in vivo in animals with reflux, decreases the proliferation of esophageal adenocarcinoma cells, and downregulates a key cell cycle regulator, CDK2. Mechanistically, using cell growth, luciferase reporter, expression, and chromatin immunoprecipitation assays, we identify GLI1, a Hedgehogregulated transcription factor, as a novel target of Urso-Aspirin combination. We show that GLI1 is upregulated during esophageal carcinogenesis, and GLI1 can bind to the CDK2 promoter and activate its expression. Although the Urso-Aspirin combination downregulates GLI1, the GLI1 overexpression not only abrogates the effect of this combination on proliferation but it also restores CDK-2 expression. These findings support that the chemopreventive effect of the Urso-Aspirin combination occurs, at least in part, through a novel GLI1-CDK2-dependent mechanism. To further understand the regulation of CDK2 by GLI1, both pharmacologic and RNAi-mediated approaches show that GLI1 is a transcriptional activator of CDK2, and this regulation occurs independent of Smoothened, the central transducer of the Hedgehog canonical pathway. Collectively, these results identify a novel GLI1-to-CDK2 pathway in esophageal carcinogenesis, which is a bona fide target for effective combinatorial chemoprevention with Urso and Aspirin.
UR - http://www.scopus.com/inward/record.url?scp=77956284378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956284378&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-10-0197
DO - 10.1158/0008-5472.CAN-10-0197
M3 - Article
C2 - 20647328
AN - SCOPUS:77956284378
SN - 0008-5472
VL - 70
SP - 6787
EP - 6796
JO - Cancer research
JF - Cancer research
IS - 17
ER -