TY - JOUR
T1 - Cluster analysis
T2 - A simple, versatile, and robust algorithm for endocrine pulse detection
AU - Veldhuis, J. D.
AU - Johnson, M. L.
PY - 1986
Y1 - 1986
N2 - Endocrine signaling provides one critical means of physiological communication within an organism. Many endocrine signals exhibit an episodic or pulsatile configuration. In an effort to provide a versatile and statistically based algorithm for investigating the regulation of endocrine pulse signals, we have formulated a computerized algorithm in which a pulse is defined as a statistically significant increase in a 'cluster' of hormone values followed by a statistically significant decrease in a second cluster of values. The increase or decrease is judged in relation to the actual experimental error expressed by the replicates in the presumptive nadir and peak data clusters. The program permits the operator to specify the cluster sizes of test peaks and pre- and postpeak nadirs. This method is largely insensitive to unstable base-line hormone concentrations and is not adversely affected by varying pulse amplitudes, widths, or configurations within the endocrine series. In addition, the simple statistical basis for this algorithm renders it minimally dependent on explicit or a priori assumptions about rates of hormone secretion or disappearance. The program has been validated for false-positive error against a wide range of intraseries coefficients of variation (4-52%). We have illustrated its performance for profiles of luteinizing hormone follicle-stimulating hormone, growth hormone, prolactin, adrenocorticotropic hormone, and cortisol and compared these epsodic patterns with those of stable serum constituents (total serum protein and calcium), which do not exhibit pulsatile fluctuation.
AB - Endocrine signaling provides one critical means of physiological communication within an organism. Many endocrine signals exhibit an episodic or pulsatile configuration. In an effort to provide a versatile and statistically based algorithm for investigating the regulation of endocrine pulse signals, we have formulated a computerized algorithm in which a pulse is defined as a statistically significant increase in a 'cluster' of hormone values followed by a statistically significant decrease in a second cluster of values. The increase or decrease is judged in relation to the actual experimental error expressed by the replicates in the presumptive nadir and peak data clusters. The program permits the operator to specify the cluster sizes of test peaks and pre- and postpeak nadirs. This method is largely insensitive to unstable base-line hormone concentrations and is not adversely affected by varying pulse amplitudes, widths, or configurations within the endocrine series. In addition, the simple statistical basis for this algorithm renders it minimally dependent on explicit or a priori assumptions about rates of hormone secretion or disappearance. The program has been validated for false-positive error against a wide range of intraseries coefficients of variation (4-52%). We have illustrated its performance for profiles of luteinizing hormone follicle-stimulating hormone, growth hormone, prolactin, adrenocorticotropic hormone, and cortisol and compared these epsodic patterns with those of stable serum constituents (total serum protein and calcium), which do not exhibit pulsatile fluctuation.
UR - http://www.scopus.com/inward/record.url?scp=0022447036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0022447036&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.1986.250.4.e486
DO - 10.1152/ajpendo.1986.250.4.e486
M3 - Article
C2 - 3008572
AN - SCOPUS:0022447036
SN - 0193-1849
VL - 250
SP - E486-E493
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 4 (13/4)
ER -