Automated scoring of total inflammation in renal allograft biopsies

Byron Smith, Joseph Grande, Maggie Ryan, Maxwell Smith, Aleksandar Denic, Meyke Hermsen, Walter Park, Walter Kremers, Mark Stegall

Research output: Contribution to journalArticlepeer-review


Background: Computer-assisted scoring is gaining prominence in the evaluation of renal histology; however, much of the focus has been on identifying larger objects such as glomeruli. Total inflammation impacts graft outcome, and its quantification requires tools to identify objects at the cellular level or smaller. The goal of the current study was to use CD45 stained slides coupled with image analysis tools to quantify the amount of non-glomerular inflammation within the cortex. Methods: Sixty renal transplant whole slide images were used for digital image analysis. Multiple thresholding methods using pixel intensity and object size were used to identify inflammation in the cortex. Additionally, convolutional neural networks were used to separate glomeruli from other objects in the cortex. This combined measure of inflammation was then correlated with rescored Banff total inflammation classification and outcomes. Results: Identification of glomeruli on biopsies had high fidelity (mean pixelwise dice coefficient of.858). Continuous total inflammation scores correlated well with Banff rescoring (maximum Pearson correlation.824). A separate set of thresholds resulted in a significant correlation with alloimmune graft loss. Conclusions: Automated scoring of inflammation showed a high correlation with Banff scoring. Digital image analysis provides a powerful tool for analysis of renal pathology, not only because it is reproducible and can be automated, but also because it provides much more granular data for studies.

Original languageEnglish (US)
Article numbere14837
JournalClinical Transplantation
Issue number1
StatePublished - Jan 2023


  • artificial intelligence
  • convolutional neural networks
  • image analysis
  • kidney pathology
  • kidney transplant

ASJC Scopus subject areas

  • Transplantation


Dive into the research topics of 'Automated scoring of total inflammation in renal allograft biopsies'. Together they form a unique fingerprint.

Cite this