TY - JOUR
T1 - Age-Dependent Changes in the Plasma and Brain Pharmacokinetics of Amyloid-β Peptides and Insulin
AU - Zhou, Andrew L.
AU - Sharda, Nidhi
AU - Sarma, Vidur V.
AU - Ahlschwede, Kristen M.
AU - Curran, Geoffry L.
AU - Tang, Xiaojia
AU - Poduslo, Joseph F.
AU - Kalari, Krishna R.
AU - Lowe, Val J.
AU - Kandimalla, Karunya K.
N1 - Funding Information:
This work was supported by the Minnesota Partnership for Biotechnology and Medical Genomics [Grant 00056030], the Dr. Paul B. Myrdal Memorial Pre-Doctoral Fellowship in Pharmaceutics, the Ronald J. Sawchuk Fellowship in Pharmacokinetics, and the Theodore H. Rowell Graduate Fellowship.
Publisher Copyright:
© 2022 - IOS Press. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Background: Age is the most common risk factor for Alzheimer's disease (AD), a neurodegenerative disorder characterized by the hallmarks of toxic amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Moreover, sub-physiological brain insulin levels have emerged as a pathological manifestation of AD. Objective: Identify age-related changes in the plasma disposition and blood-brain barrier (BBB) trafficking of Aβ peptides and insulin in mice. Methods: Upon systemic injection of 125I-Aβ40, 125I-Aβ42, or 125I-insulin, the plasma pharmacokinetics and brain influx were assessed in wild-type (WT) or AD transgenic (APP/PS1) mice at various ages. Additionally, publicly available single-cell RNA-Seq data [GSE129788] was employed to investigate pathways regulating BBB transport in WT mice at different ages. Results: The brain influx of 125I-Aβ40, estimated as the permeability-surface area product, decreased with age, accompanied by an increase in plasma AUC. In contrast, the brain influx of 125I-Aβ42 increased with age, accompanied by a decrease in plasma AUC. The age-dependent changes observed in WT mice were accelerated in APP/PS1 mice. As seen with 125I-Aβ40, the brain influx of 125I-insulin decreased with age in WT mice, accompanied by an increase in plasma AUC. This finding was further supported by dynamic single-photon emission computed tomography (SPECT/CT) imaging studies. RAGE and PI3K/AKT signaling pathways at the BBB, which are implicated in Aβ and insulin transcytosis, respectively, were upregulated with age in WT mice, indicating BBB insulin resistance. Conclusion: Aging differentially affects the plasma pharmacokinetics and brain influx of Aβ isoforms and insulin in a manner that could potentially augment AD risk.
AB - Background: Age is the most common risk factor for Alzheimer's disease (AD), a neurodegenerative disorder characterized by the hallmarks of toxic amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Moreover, sub-physiological brain insulin levels have emerged as a pathological manifestation of AD. Objective: Identify age-related changes in the plasma disposition and blood-brain barrier (BBB) trafficking of Aβ peptides and insulin in mice. Methods: Upon systemic injection of 125I-Aβ40, 125I-Aβ42, or 125I-insulin, the plasma pharmacokinetics and brain influx were assessed in wild-type (WT) or AD transgenic (APP/PS1) mice at various ages. Additionally, publicly available single-cell RNA-Seq data [GSE129788] was employed to investigate pathways regulating BBB transport in WT mice at different ages. Results: The brain influx of 125I-Aβ40, estimated as the permeability-surface area product, decreased with age, accompanied by an increase in plasma AUC. In contrast, the brain influx of 125I-Aβ42 increased with age, accompanied by a decrease in plasma AUC. The age-dependent changes observed in WT mice were accelerated in APP/PS1 mice. As seen with 125I-Aβ40, the brain influx of 125I-insulin decreased with age in WT mice, accompanied by an increase in plasma AUC. This finding was further supported by dynamic single-photon emission computed tomography (SPECT/CT) imaging studies. RAGE and PI3K/AKT signaling pathways at the BBB, which are implicated in Aβ and insulin transcytosis, respectively, were upregulated with age in WT mice, indicating BBB insulin resistance. Conclusion: Aging differentially affects the plasma pharmacokinetics and brain influx of Aβ isoforms and insulin in a manner that could potentially augment AD risk.
KW - Aging
KW - amyloid-β
KW - blood-brain barrier
KW - insulin
KW - pharmacokinetics
UR - http://www.scopus.com/inward/record.url?scp=85124173074&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124173074&partnerID=8YFLogxK
U2 - 10.3233/JAD-215128
DO - 10.3233/JAD-215128
M3 - Article
C2 - 34924382
AN - SCOPUS:85124173074
SN - 1387-2877
VL - 85
SP - 1031
EP - 1044
JO - Journal of Alzheimer's Disease
JF - Journal of Alzheimer's Disease
IS - 3
ER -