Abstract
Efficient cellular energy homeostasis is a critical determinant of muscle performance, providing evolutionary advantages responsible for species survival. Phosphotransfer reactions, which couple ATP production and utilization, are thought to play a central role in this process. Here, we provide evidence that genetic disruption of AK1-catalyzed β-phosphoryl transfer in mice decreases the potential of myofibers to sustain nucleotide ratios despite up-regulation of high-energy phosphoryl flux through glycolytic, guanylate and creatine kinase phosphotransfer pathways. A maintained contractile performance of AK1-deficient muscles was associated with higher ATP turnover rate and larger amounts of ATP consumed per contraction. Metabolic stress further aggravated the energetic cost in AK1(-/-) muscles. Thus, AK1-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy, enabling skeletal muscle to perform at the lowest metabolic cost.
Original language | English (US) |
---|---|
Pages (from-to) | 6371-6381 |
Number of pages | 11 |
Journal | EMBO Journal |
Volume | 19 |
Issue number | 23 |
DOIs | |
State | Published - Dec 1 2000 |
Keywords
- Adenylate kinase
- Creatine kinase
- Energy homeostasis
- Knockout mice
- Phosphoryl transfer
ASJC Scopus subject areas
- Neuroscience(all)
- Molecular Biology
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)