Acute glucose deprivation leads to apoptosis in a cell model of acute diabetic neuropathy

Hiroyuki Honma, Jewel L. Podratz, Anthony J. Windebank

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Objective: Our aims were to better understand the mechanisms underlying peripheral neuropathy with diabetes mellitus and to test the hypothesis that acute lowering of glucose levels induces apoptosis in hypoxic neurons. Methods: We used rat dissociated dorsal root ganglion (DRG) neurons incubated in a medium high in glucose concentration (700 mg%) and room air (PO2 150 torr). After 5 days, DRG neurons were placed in hypoxic conditions (PO 2 7.6 torr) with a normal-glucose (100 mg%) or high-glucose (700 mg%) medium containing 3 of 100 ng/mL of nerve growth factor. Acute lowering of glucose levels under hypoxic conditions led to apoptosis of DRG neurons. Apoptosis was demonstrated by bis-benzimide staining for nuclear fragmentation, electron microscopy, DNA laddering, and TUNEL staining. Caspase 3 immunocytochemistry and inhibition of neuronal death by the caspase inhibitor z-VAD-fmk (100 μM) confirmed that death was apoptotic. Results: Hypoxia-induced death was decreased when DRG neurons were maintained in high-glucose medium, suggesting that high levels of substrate protected against hypoxia. Apoptosis was completely prevented by increasing the concentration of nerve growth factor from 3 to 100 ng/mL and was partially prevented by the addition of the antioxidant α-lipoic acid (500 μM). Conclusions: This model provides a novel means for studying the pathogenesis and treatment of early stages of diabetic neuropathy.

Original languageEnglish (US)
Pages (from-to)65-74
Number of pages10
JournalJournal of the Peripheral Nervous System
Volume8
Issue number2
DOIs
StatePublished - Jun 2003

Keywords

  • Apoptosis
  • Diabetic neuropathy
  • Glucose

ASJC Scopus subject areas

  • Neuroscience(all)
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Acute glucose deprivation leads to apoptosis in a cell model of acute diabetic neuropathy'. Together they form a unique fingerprint.

Cite this