TY - GEN
T1 - A clinically viable Capsule Endoscopy video analysis platform for automatic bleeding detection
AU - Yi, Steven
AU - Jiao, Heng
AU - Xie, Jean
AU - Mui, Peter
AU - Leighton, Jonathon A.
AU - Pasha, Shabana
AU - Rentz, Lauri
AU - Abedi, Mahmood
PY - 2013
Y1 - 2013
N2 - In this paper, we present a novel and clinically valuable software platform for automatic bleeding detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos for GI tract run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. As a result, the process is time consuming and is prone to disease miss-finding. While researchers have made efforts to automate this process, however, no clinically acceptable software is available on the marketplace today. Working with our collaborators, we have developed a clinically viable software platform called GISentinel for fully automated GI tract bleeding detection and classification. Major functional modules of the SW include: the innovative graph based NCut segmentation algorithm, the unique feature selection and validation method (e.g. illumination invariant features, color independent features, and symmetrical texture features), and the cascade SVM classification for handling various GI tract scenes (e.g. normal tissue, food particles, bubbles, fluid, and specular reflection). Initial evaluation results on the SW have shown zero bleeding instance miss-finding rate and 4.03% false alarm rate. This work is part of our innovative 2D/3D based GI tract disease detection software platform. While the overall SW framework is designed for intelligent finding and classification of major GI tract diseases such as bleeding, ulcer, and polyp from the CE videos, this paper will focus on the automatic bleeding detection functional module.
AB - In this paper, we present a novel and clinically valuable software platform for automatic bleeding detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos for GI tract run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. As a result, the process is time consuming and is prone to disease miss-finding. While researchers have made efforts to automate this process, however, no clinically acceptable software is available on the marketplace today. Working with our collaborators, we have developed a clinically viable software platform called GISentinel for fully automated GI tract bleeding detection and classification. Major functional modules of the SW include: the innovative graph based NCut segmentation algorithm, the unique feature selection and validation method (e.g. illumination invariant features, color independent features, and symmetrical texture features), and the cascade SVM classification for handling various GI tract scenes (e.g. normal tissue, food particles, bubbles, fluid, and specular reflection). Initial evaluation results on the SW have shown zero bleeding instance miss-finding rate and 4.03% false alarm rate. This work is part of our innovative 2D/3D based GI tract disease detection software platform. While the overall SW framework is designed for intelligent finding and classification of major GI tract diseases such as bleeding, ulcer, and polyp from the CE videos, this paper will focus on the automatic bleeding detection functional module.
KW - And false alarm
KW - Automatic bleeding detection
KW - Bleeding classification
KW - CE imaging
KW - Capsule Endoscopy
KW - Disease detection
KW - Miss-detection
UR - http://www.scopus.com/inward/record.url?scp=84878382791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878382791&partnerID=8YFLogxK
U2 - 10.1117/12.2001881
DO - 10.1117/12.2001881
M3 - Conference contribution
AN - SCOPUS:84878382791
SN - 9780819494443
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Medical Imaging 2013
T2 - Medical Imaging 2013: Computer-Aided Diagnosis
Y2 - 12 February 2013 through 14 February 2013
ER -