Project Details
Description
Project Summary/Abstract
Many clinical situations in musculoskeletal care, including spinal arthrodesis procedures, require a bone
reconstruction strategy to treat contained defects (a hole in a bone), non-contained defects (a missing segment
of bone), or fusion across bone generation spaces (where bone would not normally grow). Novel orthopaedic
biomaterials that effect guided bone growth into biodegradable polymeric composite scaffolds are candidates
to address such requirements, and the goal that has motivated the development of these materials is the
augmentation and eventual elimination of current autograft and allograft bone strategies for transplantation into
skeletal sites. For the past decade, our laboratory has done extensive work on three-dimensional (3-D)
preformed bone scaffolds and transitioned them to clinically relevant large animal models for segmental bone
defect repair. The current proposal focuses on the translation of our injectable and moldable bone scaffold
work toward initial human use in spinal fusion via three integrated aims. In Aim 1, we will further optimize
members of our suite of biocompatible, biodegradable, and self-crosslinkable fumarate ester polymeric
biomaterial networks by inter-crosslinking of poly(propylene fumarate) (PPF) and poly(caprolactone) (PCL) via
catalyst-free click chemistry (PPF/PCL). The network will incorporate osteoconductive nano-hydroxyapatite
(nano-HA) and degradable hydrogel porogens that encapsulate vascular endothelial growth factor (VEGF) and
bone morphogenetic protein-2 (BMP-2). The VEGF-containing hydrogel will degrade faster than the BMP-
containing hydrogel to achieve dual, sequential delivery of angiogenic and osteoinductive factors coupled with
two-stage porosity generation. The composite PPF/PCL formulations will be optimized separately for injectable
and moldable bone scaffolds based on success criteria in rheological and handling properties, mechanical
properties, porosity and interconnectivity, degradation rates, and growth factor release profiles. In Aim 2, we
will determine the in vivo effect of the injectable and moldable PPF/PCL scaffold formulations in rabbit
interbody and posterolateral spinal fusion models, respectively. Due to the fact that the gold standard, autograft
bone, may incur donor site morbidity and can have a suboptimal fusion rate in some situations, spinal fusion is
often considered one of the most challenging applications of bone graft substitutes, thus allowing us to critically
evaluate the optimized candidate scaffold implant formulations. In Aim 3, we will assess the bone regeneration
performance of PPF/PCL composite scaffolds in a large animal model of clinically relevant human surgical
procedures as a translational step toward initial human use. We have selected a sheep unilateral posterior
spine pedicle screw instrumented reconstruction model, consisting of either a posterior interbody fusion, a
posterolateral intertransverse process fusion, or a combination of both these fusion processes at the same
level, utilizing our injectable and moldable scaffold strategies to accomplish these goals.
Status | Active |
---|---|
Effective start/end date | 4/5/19 → 3/31/24 |
Funding
- National Institute of Arthritis and Musculoskeletal and Skin Diseases: $523,072.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.